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Abstract
Sleep restriction causes impaired cognitive performance that can result in adverse conse-

quences in many occupational settings. Individuals may rely on self-perceived alertness to

decide if they are able to adequately perform a task. It is therefore important to determine

the relationship between an individual’s self-assessed alertness and their objective perfor-

mance, and how this relationship depends on circadian phase, hours since awakening, and

cumulative lost hours of sleep. Healthy young adults (aged 18–34) completed an inpatient

schedule that included forced desynchrony of sleep/wake and circadian rhythms with

twelve 42.85-hour “days” and either a 1:2 (n = 8) or 1:3.3 (n = 9) ratio of sleep-opportunity:

enforced-wakefulness. We investigated whether subjective alertness (visual analog scale),

circadian phase (melatonin), hours since awakening, and cumulative sleep loss could pre-

dict objective performance on the Psychomotor Vigilance Task (PVT), an Addition/Calcula-

tion Test (ADD) and the Digit Symbol Substitution Test (DSST). Mathematical models that

allowed nonlinear interactions between explanatory variables were evaluated using the

Akaike Information Criterion (AIC). Subjective alertness was the single best predictor of

PVT, ADD, and DSST performance. Subjective alertness alone, however, was not an accu-

rate predictor of PVT performance. The best AIC scores for PVT and DSST were achieved

when all explanatory variables were included in the model. The best AIC score for ADD was

achieved with circadian phase and subjective alertness variables. We conclude that subjec-

tive alertness alone is a weak predictor of objective vigilant or cognitive performance. Pre-

dictions can, however, be improved by knowing an individual’s circadian phase, current

wake duration, and cumulative sleep loss.
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Introduction
Sleep loss causes deterioration in cognitive performance, an increase in errors, and diminished
job performance in many occupations such as medical residents [1,2], pilots [3], commercial
drivers [4], and shift-workers [5,6]. A single night of reduced sleep causes lapses in vigilant
attention and is a significant causative factor in traffic accidents [7,8]. Chronic sleep restriction
(i.e., multiple nights with insufficient sleep), leads to cumulative deterioration in vigilant atten-
tion and cognitive performance [9]. To improve public safety, it is important to identify when
individuals are at risk for attentional lapses and impaired performance related to sleep loss. As
an initial step to devise tools to flag such individuals, we quantified how different metrics pre-
dicted vigilant attention and cognitive performance.

Prior investigations have demonstrated changes in vigilant attention and cognitive perfor-
mance with sleep restriction and circadian phase [10–13]. A meta-analysis of 19 research stud-
ies showed impairment in cognition, motor skills, and mood with sleep restriction [14]. Sleep
restriction can cause global decreases in brain activity that adversely affect attention [15,16].
An increased duration of wakefulness is associated with greater adverse effects on vigilant
attention [9,17,18] and with increasing impairment in psychomotor vigilance as chronic sleep
loss accumulates [9,10,14,18,19]. Circadian phase modulates vigilant performance, with
improvements during the circadian day and declines during the circadian night [12,19].

While many individuals rely on their self-perceived level of alertness to determine if they
can safely perform a task, group average data show a mismatch between objective performance
and subjective ratings of alertness [9,18,20]. Since sleep restriction impairs cognition, we
hypothesized that it may also affect the ability of an individual to accurately assess his or her
level of performance. In studies in which subjective alertness and objective performance were
both assessed, the time courses for the group averages of these metrics were different, suggest-
ing that research volunteers were only partially cognizant of the effect of sleep restriction on
performance [19,21–23]. Subjective ratings of alertness plateau within a few days of chronic
sleep restriction, whereas cognitive performance continues to decline across weeks [9,18]. Fur-
thermore, sleep restricted participants tend to overestimate their cognitive performance during
biological night hours [24]. However, none of these studies examined the relationship between
subjective alertness and cognitive performance within each testing session for each individual.
In other words, it remains unknown how well an individual’s subjective sleepiness predicts
attentional failure or other cognitive decline at that moment.

In this study, we investigated whether a similar discrepancy between subjective alertness
and vigilant performance is found under forced desynchrony conditions with and without
chronic sleep restriction. Then, we quantified within each testing session the extent to which
four experimentally-proven important variables—self-perceived rating of subjective alertness
(Alertness), circadian phase (Phase), hours since awakening (Wake Duration), and hours of
accumulated sleep loss (Sleep Debt)–predicted vigilant attention as measured by the Psychomo-
tor Vigilance Task (PVT), Addition/Calculation Test (ADD), and the Digit Symbol Substitu-
tion Test (DSST). Models that included all possible combinations of each of these four
candidate explanatory variables were investigated to find the most predictive variables.

Materials and Methods

Ethics
This study was approved by the Partners Healthcare Institutional Review Board. Written
informed consent was obtained from all participants after all elements of the experiment proto-
col were explained in person by an investigator according to the standards of the Human
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Research Committee of the Brigham andWomen’s Hospital, in accordance with the Declara-
tion of Helsinki.

Participants and screening procedures
Data for these analyses were from 17 participants (4F, 13M; 18 to 34 years) obtained from two
inpatient forced desynchrony (FD) protocols: a Control protocol [25] and a Chronic Sleep
Restriction (CSR) protocol [26]. Details of these protocols are provided in the referenced publi-
cations and summarized below.

1) Common to both protocols: All participants were free of medical illness, sleep disorders,
or psychopathology, as verified by detailed medical history, complete physical examination,
standard urine and blood screening studies, and psychological evaluation. Participants had no
history of shift work, or transmeridian travel for the preceding 3 months Participants were
instructed to avoid all over-the-counter medications, alcohol, caffeine, or illicit substances for
three weeks before the study. This was verified by urine and blood testing during screening and
on admission to the study. Participants were excluded if self-reported habitual sleep durations
fell outside of 6.5 to 9 hours. Participants were scheduled to a regular sleep-wake schedule at
the same (habitual) time each night for three weeks prior to admission. Participants were
allowed to deviate by more than 30 minutes from their habitual sleep times on a maximum of
two occasions. These times were verified by sleep logs, time-stamped voice messages, and wrist
actigraphy. Participants were studied within the Intensive Physiological Monitoring Unit of
Brigham and Women’s Hospital within private suites free of any time cues. All events were
scheduled relative to each individual’s habitual bedtimes.

Testing included: (i) An objective metric, the 10-minute Psychomotor Vigilance Task (PVT),
where participants are repeatedly presented with a simple visual stimulus and asked to respond
as quickly as possible [27]. The PVT is a task requiring both sustained attention and speed,
which is a fundamental component of complex tasks [28,29]. Participants’ responses in millisec-
onds were recorded. Individuals receive feedback on each PVT in that the stimulus is a visual
presentation of the number of msec since stimulus onset. Therefore each individual knows their
response time for each stimulus presentation. (ii) A second objective metric, the Addition/Cal-
culation Test (ADD), measures cognitive throughput. Responses were recorded as the number
of correct answers given in 2 minutes on a 2-digit addition test [25]. Individuals receive a new
ADD test each time and do not receive feedback on their responses. (iii) A third objective met-
ric, the 2 minute Digit Symbol Substitution Test (DSST), where a participant uses a key to enter
the symbol which corresponds to a presented digit [25]. The participant has to pair the number
with the symbol as rapidly as possible, testing vigilant attention, processing speed, memory, and
motor skills. Responses were recorded as number of correct answers. Individuals receive a new
DSST each time and do not receive feedback on their responses. (iv) A subjective metric, the
Visual Analog Scale (VAS), was used to rate Alertness. Participants rated their perceived level of
subjective alertness on a non-numeric scale, (with “Sleepy” and “Alert” as anchor texts) that was
later scored from 0 to 100, where 100 is the highest level of subjective alertness [30].

For the FD portion of the protocol, participants were scheduled to 42.85 hours “days”. A
42.85 hour “day” was used (i) because it is outside the range of entrainment of the circadian
pacemaker, whose intrinsic rate is approximately 24.2 hours [31], allowing study of the effects
of circadian phase independently of length of time awake, and (ii) so extended wake episodes
could be investigated.

2) Control protocol: Eight male volunteers (ages 18–30 years) were scheduled to a FD proto-
col with a 1:2 sleep:wake ratio. The scheduled sleep opportunity for the 3 weeks prior to entry
to the inpatient portion of the protocol was 8 hours. In the inpatient portion of the protocol,
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each participant was first scheduled to maintain their outpatient schedule for three days. Next,
participants began the FD protocol in which each “day” included 28.57 hours of wakefulness
and 14.28 hours of sleep opportunity to achieve a sleep:wake ratio of 1:2. This protocol contin-
ued for 14 “days”. Light levels were less than 15 lux during wake hours and less than 0.03 lux
during scheduled sleep hours to minimize resetting of the circadian rhythm [32]. During the
scheduled wake episodes, VAS was collected every 30 minutes and a 25-minute test battery
that included PVT, ADD and the DSST occurred every 2 hours.

3) Chronic Sleep Restriction (CSR) protocol: Nine volunteers, (4F, 5M; ages 21–34 years), were
scheduled to a FD protocol with a 1:3.3 sleep-wake ratio. The scheduled sleep opportunity for the
3 weeks prior to entry to the inpatient portion of the protocol was 10 hours. In the inpatient por-
tion of the protocol, each participant was first scheduled to three days with 12 hours sleep oppor-
tunity during the night and 4 hours sleep opportunity during the day to minimize any prior sleep
debt. Participants' next schedule included 10 hours sleep opportunity for 2 days. Then, partici-
pants began the FD protocol, in which each “day” included 32.85 hours of wakefulness and 10
hours of sleep opportunity to achieve a sleep:wake ratio of 1:3.3, equivalent to 5.6 hours sleep per
24. This protocol continued for 12 “days”. Technicians were in the room during scheduled wake
episodes to minimize inadvertent sleep during scheduled wake hours. Light levels were approxi-
mately 4 lux during wake episodes and 0 lux during scheduled sleep times to minimize resetting of
the circadian rhythm. During the scheduled wake episodes, VAS was collected every 30 minutes.
Two hours after awakening, participants began the first 25-minute test battery which included the
PVT every 4 hours, and the ADD and DSST every 2 hours during scheduled wake episodes.

Primary analyses
Circadian phase (0 to 360 degrees) and period for each participant were calculated using Non-
Orthogonal Spectral Analysis (NOSA) of plasma melatonin data, which were collected every
60 minutes throughout the FD protocol [26]. Data from the first 12 FD “days” of the Control
protocol (3 weeks) and all 12 FD “days” of the CSR were used. Zero degrees was defined as the
fit melatonin maximum (corresponding to ~ 3 am for an individual sleeping habitually
between the hours of 11 pm to 7 am). Due to the slightly different conditions prior to FD in
each experiment, we analyzed the data from each experiment separately.

Secondary analyses
Objective (PVT, ADD, and DSST) and subjective (VAS) measurements were paired for these
analyses if the tests occurred within 45 minutes of each other. If two VAS tests occurred within
45 minutes of the objective test, the test pair with the shortest time separation was used. Data
were binned according to the NOSA-calculated circadian phase of the paired tests. For the pur-
poses of analysis, we defined “Adverse” and “Optimal” circadian phases for performance, using
the same definitions as in Cohen et al. [26]. Adverse Phase occurred during the biological night
and was defined as -30 to 90 degrees, while Optimal Phase occurred during the biological day
and was defined as 150–270 degrees. We also defined “Adverse” and “Optimal” durations of
wakefulness for performance: Adverse Time was defined as 20–28 hours after scheduled wake,
while Optimal Time was defined as 2–10 hours after scheduled wake.

Data were binned according to week of FD, with one week corresponding to four
42.85-hour “days” (171.4 hrs), which is very close to the duration of a calendar week (168
hours). (ii) Within each week, the four scheduled wake episodes each began at a different circa-
dian phase, resulting in four different combinations of circadian phase and length of time
awake for each testing session. This allowed us to investigate the independent contributions of
these factors to performance and alertness.
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Control and CSR data were also analyzed as a function of the cumulative lost hours of sleep
at the time of each test on each protocol. This was calculated as the cumulative number of
hours of scheduled wakefulness during the FD protocol up to the time of each test, minus the
number of hours the participant would have been awake if living on a 24-hr day for the same
duration with 16 hours of wakefulness and 8 hours of sleep at their habitual time per day. We
used this approach, rather than computing the actual amount of sleep obtained (which may be
modulated by circadian phase), to follow the methods used in existing mathematical models of
human performance, which base predictions on time in bed (i.e., sleep opportunity) [33,34].
The rationale for this approach is that such models could be applicable to real-world contexts
where sleep opportunities are known but actual sleep duration cannot be reliably measured.
This also is similar to a metric used by Van Dongen et al. [18] called Cumulative Excess Wake-
fulness which was calculated as the number of hours of wakefulness beyond a critical wake
duration, statistically estimated to be 15.84 ± 0.73 hours [18].

Our goal in this study was to predict objective PVT, ADD, and DSST performance using
VAS (Alertness) and three other variables: Circadian phase (Phase), hours since scheduled
awakening (Wake Duration), and cumulative lost hours of sleep (Sleep Debt). Previous studies
have shown that numerous physiological variables, including sleepiness, subjective alertness,
and performance, depend on nonlinear interactions of circadian phase and sleep homeostatic
pressure [11,17,19,24,30,35]. To determine the relationship between Alertness and PVT, ADD,
or DSST, it is therefore important to use models that allow nonlinear relationships between
these variables, rather than methods like Principal Component Analysis, which assume linear
relationships between all variables.

After considering a variety of mathematical forms, we identified three candidate mathemati-
cal models that performed best in fitting the data. All models were mixed-effect models, to
allow for individual participant differences. We call these models “Linear”, “Exponential”, and
“Logistic”, based on the functional form of the term that incorporates the effects of Phase and
Wake Duration. The form of these models is:

Linear: P = b1 + (b2W+ b3)X

Exponential: P ¼ b1 þ ðb2 W þ b3 Þeb4X

Logistic: P ¼ b1 þ ðb2W þ b3Þ eðb4 þ b5X Þ
1þeðb4 þ b5X Þ

where:

X ¼ Aþ b6cosðC þ b7Þ þ b8T

b1 − b8 are parameters to be fit,

A = VAS (Alertness),

W = Cumulative sleep loss in hours (Sleep Debt),

P = log(PVT mean), ADD Correct, or DSST Correct

C = Circadian Phase (Phase),

T = Hours since scheduled awakening (Wake Duration).

These three forms of the model were each fitted to the data using the MatLab functions nlin-
fit, which fits a nonlinear regression model, or nlmefit, which fits a nonlinear mixed effects
regression model. Their goodness-of-fit was compared using an adjusted R2 metric.
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In addition, we wanted to determine the relative importance of each of the four variables–
Alertness, Phase,Wake Duration, and Sleep Debt–to predicting objective performance. To
achieve this, we examined the effects of individually excluding or including each factor from
the model, for all 16 possible combinations of the four variables. Variables were excluded by
giving them a coefficient of zero. The Akaike Information Criterion (AIC) was used to compare
models; AIC scores favor more parsimonious models. Lower AIC values indicate a better fit
when adjustment is made for the number of variables in the model.

Sleep Debt changed across the FD protocol for both Control and CSR groups, with over 50
hours of cumulative lost hours of sleep in the CSR group by the end of the FD protocol (Fig 1).
We note that this variable is based on available sleep opportunities, and is therefore an estimate
of the true amount of sleep debt.

Both PVT lapses (reaction time> 500 msec) and PVT mean reaction time for each test bat-
tery were investigated as metrics for PVT objective performance. A logarithmic transformation
was applied to PVT mean reaction time and to the standard deviation of PVT reaction time
(PVT standard deviation). This was done to normalize the data (since they were not normally
distributed) and make it easier to visualize the relationship between these variables, since the
raw PVT metrics vary by orders of magnitude between well-rested and CSR conditions. This
normalization achieves a similar outcome to taking reciprocal values of PVT reaction times,
which has been used elsewhere [35]. The relationship between log(PVT mean) and log(PVT

Fig 1. Changes in Sleep Debt by hour across the 3-week (twelve 42.85-h “days”) Forced Desynchrony
protocol. Sleep Debt in the Control group varies around zero hours due to prolonged wake and sleep bouts
with a 1:2 sleep:wake ratio. The Chronic Sleep Restriction (CSR) protocol accumulates Sleep Debt across
the entire duration of the protocol. Heavy lines indicate when the sleep was scheduled.

doi:10.1371/journal.pone.0151770.g001
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standard deviation) was modeled with a third degree polynomial using the Levenberg-Mar-
quardt least squares algorithm and with mixed model regression.

For ADD and DSST test batteries the number of correct responses were used as metrics for
objective performance.

Results
PVT mean and PVT standard deviation increased from week one to week three (reflecting a
decrease in vigilant performance) in both Control and CSR. PVT mean values were 322
±103ms in Control and 369±248ms in CSR in the first week, and were 593±796ms in Control
and 1511±2106ms in CSR in the last week. Alertness ratings decreased in both groups between
the first and third week: they were 65±17 in Control and 81±16 in CSR in the first week, and
were 63±17 in Control and 53±27 in CSR in the third week. As reported by Cohen et al. [26]
and shown in Fig 2, the slowest reaction times were observed at Adverse Time and Adverse
Phase, withmean PVT reaction times of 571±584ms in Control and 2614±2962ms in CSR. The
fastest reaction times were observed at Optimal Time and Optimal Phase, withmean PVT reac-
tion times of 0306±61ms in Control and 297±154ms in CSR. Similarly, the lowest Alertness rat-
ings were observed at Adverse Time and Adverse Phase, with mean rating of 42±23 in Control
and 29±27 in CSR (Fig 3). The highest Alertness ratings were observed at Optimal Time and
Optimal Phase, with 74±14 in Control and 83 ± 12 in CSR.

Across all test batteries, there was a positive relationship between log(PVT mean) and log
(PVT standard deviation). These variables were strongly correlated; a third degree polynomial
fit yielded an adjusted R2 value of 0.947 (Fig 4). Notably, the relationship between these vari-
ables did not depend on experimental condition: the same curve describes the relationship in
both Control and CSR conditions, with individuals in the CSR condition reaching higher points
on the curve more often. There was little inter-individual variability in the relationship between
these variables (Fig 5). Fitting the third order polynomial on an individual basis only marginally
improved the adjusted R2 value to 0.964. Therefore, regardless of condition, if log(PVT mean) is
known, accurate and reliable prediction of log (PVT standard deviation) is possible.

Fig 2. PVT scores by Circadian Phase andWake Duration.Mean reaction times (RT) on the Psychomotor Vigilance Task (PVT) are plotted as a function
of Circadian Phase (zero degrees is the fit melatonin maximum) andWake Duration (hours elapsed in scheduled wake episode). The top panel contains data
from the Chronic Sleep Restriction (CSR) condition. The bottom panel contains data from the Control condition. Each column shows one week (four 42.85-h
“days”) of data.

doi:10.1371/journal.pone.0151770.g002
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Fig 3. Subjective Alertness scores by Circadian Phase andWake Duration.Mean Subjective Alertness scores are plotted as a function of Circadian
Phase (zero degrees is the fit melatonin maximum) andWake Duration (hours elapsed in scheduled wake episode). The top panel contains data from the
Chronic Sleep Restriction (CSR) condition. The bottom panel contains data from the Control condition. Each column shows one week (four 42.85-h “days”) of
data.

doi:10.1371/journal.pone.0151770.g003

Fig 4. The relationship between PVT standard deviation and PVTmean. Data are shown for Chronic
Sleep Restriction (CSR) and Control conditions. Data from both conditions demonstrate a robust relationship
between the standard deviation and mean of the Psychomotor Vigilance Task (PVT). Logarithms of each
variables are plotted to the wide ranges that the data span. Each data point represents one 10-min session.
The same polynomial fit is shown to data in both plots with 95% confidence intervals indicated by dashed
lines.

doi:10.1371/journal.pone.0151770.g004
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The frequency of lapses was also related to the participants' level of Alertness (Table 1). For
Alertness in the lowest quintile (�42.6), 92% of test batteries contained at least one PVT lapse;
for Alertness in the highest quintile (�83.4), only 56% of test batteries had at least one lapse.
The crossover from more lapses than expected to fewer than expected occurs at ~70th percentile

Fig 5. PVT standard deviation versus PVTmean for each participant. The same data as in Fig 4 are plotted separately for each participant. Polynomial
fits are shown with fixed effects (solid black line) and with mixed effects (dashed line).

doi:10.1371/journal.pone.0151770.g005

Table 1. Contingency Table of Alertness vs. Absence or Presence of PVT lapses.

Alertness No Lapses One or More Lapses Row Totals

0–10% (0–22.8) 10 (42.9) 147 (114.1) 157

10–20% (22.8–42.6) 21 (58.8) 194 (156.2) 215

20–30% (42.6–53.3) 68 (99.9) 297 (265.1) 365

30–40% (53.3–62.8) 81 (111.1) 325 (294.9) 406

40–50% (62.8–68.5) 122 (164.7) 480 (437.3) 602

50–60% (68.5–73.9) 166 (187.9) 521 (499.1) 687

60–70% (73.9–78.5) 204 (204.6) 544 (543.4) 748

70–80% (78.5–83.4) 247 (223.2) 569 (592.8) 816

80–90% (83.4–100) 260 (187.4) 425 (497.6) 685

90–100% (89.4–100) 196 (94) 149 (250.6) 345

Column Totals 1375 3651 5026

Left column has Alertness rating by percentiles, with corresponding Alertness rating range in parentheses.

In the No Lapses or One or More Lapses columns, number of occurrences is given and expected

frequency (based on column total and row total) is given in parentheses.

doi:10.1371/journal.pone.0151770.t001
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with values of Alertness of ~78.5. This contingency table has a χ2 of 305.4. The relative risk of
having a lapse in a test battery between the lower and upper Alertness quintiles was 1.64 with a
95% confidence interval of 1.56–1.72 and p-value<0.001.

The relationship between Alertness and PVT mean reaction time is shown for all partici-
pants in Fig 6 and for each individual in Fig 7. With only Alertness in the model, there is an
adjusted R2 of 0.557. Each Alertness rating had a wide range of associated PVT values. Overall,

Fig 6. PVTmean vs. Subjective Alertness. Data are shown for Chronic Sleep Restriction (CSR) and
Control conditions. Individual data points represent Subjective Alertness and mean Psychomotor Vigilance
Task (PVT) responses from the same individual, paired by close timing in the same testing session. A single
logistic function is fit to all data (solid line), with 95% confidence intervals of the best-fit line indicated by
dashed lines.

doi:10.1371/journal.pone.0151770.g006

Fig 7. PVTmean vs. Subjective Alertness for each participant. The same data as in Fig 6 are plotted separately for each participant. Logistic fits are
shown with fixed effects (solid black line) and with mixed effects (dashed line).

doi:10.1371/journal.pone.0151770.g007
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PVT reaction times were negatively correlated with Alertness. In the highest Alertness quintile,
mean reaction time was 304±98ms in Control and 447±686ms in CSR. In the lowest Alertness
quintile, mean reaction time was 574±725ms in Control and 2592±2898ms in CSR. Fitting lin-
ear, exponential, and logistic models to the group data resulted in adjusted R2 values of 0.338,
0.392, and 0.401, respectively. Some of the unexplained variability in these models is due to
inter-individual differences, which is of key interest. Fitting these same models with mixed
effects resulted in adjusted R2 values of 0.681, 0.703, and 0.728, respectively. Therefore, the
logistic fit had the highest R2 values with and without subject-specific effects, although all three
models performed similarly with subject-specific effects.

The AIC was used to compare different combinations of variables within the logistic model
for PVT mean (Table 2). When models of only a single variable were considered, Alertness pro-
vided the lowest AIC value of 586. When two variables were considered, Alertness and Sleep
Debt resulted in the lowest AIC value. This two-variable model has similar AIC values to the
3-variable models. When three variables were considered, Alertness, Sleep Debt, andWake
Duration had the lowest AIC. The lowest AIC value overall was obtained by including all four
variables, meaning that each variable contains meaningful independent information.

The model with only Alertness was not accurate at predicting PVT performance; it had a
maximum underestimation of 13,467ms and maximum overestimation of 1097ms. The model
with all variables provided the most accurate prediction of PVT performance, with a maximum
underestimation of 1128ms and a maximum overestimation of 13ms. There was also a great
deal of variability in the underestimation and overestimation for each participant (Fig 8): the
standard deviations for participant underestimation and overestimation were 4576ms and
2412ms respectively. CSR participants had larger errors in estimation than Control partici-
pants; this underlines the significant contribution of the Sleep Debt parameter.

Using the logistic model with all variables, we tested the ability of Alertness,Wake Duration,
Phase, and Sleep Debt to predict PVT mean reaction time (Fig 9). These predictions tended to
underestimate the log(PVT mean) during Adverse Phases at Optimal Time and at the 50 hours
of Sleep Debt bin center (Fig 9, left plot). Predictions were more accurate under conditions of
Adverse Time and Adverse Phase and at 50 hours of Sleep Debt.

Table 2. Table of Akaike Information Criterion (AIC) and Adjusted R2 values for the different predictive
models of PVTmean.

Variables Used in the Predictive Model for PVT
mean

Akaike Information Criterion (AIC)
value

Adjusted
R2

Phase / 0.352

Wake Duration 985 0.440

Sleep Debt 899 0.505

Alertness 586 0.529

Phase, Sleep Debt 919 0.4684

Phase, Alertness 573 0.482

Wake Duration, Sleep Debt 480 0.569

Wake Duration, Alertness 417 0.582

Wake Duration, Phase 393 0.606

Alertness, Sleep Debt 196 0.650

Phase, Alertness, Wake Duration 338 0.627

Phase, Alertness, Sleep Debt 195 0.663

Phase, Wake Duration, Sleep Debt 194 0.663

Wake Duration, Sleep Debt, Alertness 107 0.682

Phase, Wake Duration, Sleep Debt, Alertness 79 0.728

doi:10.1371/journal.pone.0151770.t002
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AIC values were obtained for ADD and DSST using the same three models, with values
given in Tables 3 and 4, respectively. All AIC values were larger than those for the correspond-
ing PVT models due to more data points for ADD and DSST, and thus a lower model likeli-
hood. For ADD, when using a single variable, Alertness had the highest predictive value.
However, the lowest AIC value for ADD was obtained with two variables, Alertness and Phase.
Wake Duration and Sleep Debt did not improve AIC values for ADD. The variable combina-
tions with the lowest AIC values were similar for DSST and PVT mean, across one, two, three,
and four variables. For DSST, the model with all variables provided the lowest AIC value.

Discussion

The relation between PVT performance and subjective alertness
This study confirms that Alertness does correlate with PVT performance within a testing ses-
sion, and it is the best individual predictor of PVT, ADD, and DSST. This is an interesting
result considering that unlike Phase,Wake Duration, or Sleep Debt; Alertness is the only predic-
tor that is not objectively determined. However, Alertness alone is an inaccurate predictor for
an individual.

Others studies have found a similar relationship in group averages between subjective rat-
ings of sleepiness and objective measures of neurobehavioral performance. Kaida et al. [36]

Fig 8. Comparison of model predictions of PVTmean relative to actual performance in each
individual. For each participant, we show a box-plot of the differences between predicted Psychomotor
Vigilance Task (PVT) mean in each 10-min session and actual PVT mean. Outliers are shown as dots. The
model that includes all four variables is used for predictions. Participants 1–9 are from the Chronic Sleep
Restriction (CSR) condition. Participants 10–17 are from the Control condition.

doi:10.1371/journal.pone.0151770.g008
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found that the Karolinska Sleepiness scale was correlated with PVT lapses (r = 0.56) and
strongly correlatedwith VAS Alertness (r = 0.89). Dorrian et al. [37] suggest that VAS Alertness
may be a global subjective assessment of cognitive performance, because this single rating of
subjective alertness given before a group of tests was correlated with all pretest predictions by
participants on 6 measures of cognitive performance. Pretest predictions were also correlated
with actual performance on 3 of the 6 measures.

The tendency for subjective alertness to underestimate vigilant performance has also been
noted in other studies [24]. In our study, subjects’ subjective sense of impairment deviated
most from PVT performance during the Adverse Phase (i.e., biological night). Similar results
were noted by Zhou et al. [24] who used standardized PVT and VAS scores and found a greater
deviation between PVT and VAS during biological night. We extend this finding, noting that
subjective Alertness was particularly inaccurate at predicting vigilance in the setting of adverse
circadian phase and chronic sleep debt, even when wake duration was only 2–10 hours. This
scenario would be particularly common in night-shift workers, who may therefore have a false
sense of reassurance about their own ability to remain vigilant when they have recently slept.
Note that participants were least able to accurately rate their vigilant performance during times
when they are most likely to suffer from impairment.

Fig 9. Top Row (A) Actual PVT mean for the experimental data vs. Phase and Sleep Debt. Bottom Row (B) Predicted PVTmean frommodel vs. Phase and
Sleep Debt. Plots show the mean reaction time (RT) on the Psychomotor Vigilance Task (PVT) as a function of Circadian Phase (zero degrees is the fit
melatonin maximum) and Sleep Debt (cumulative hours of insufficient sleep opportunity). Left column values are taken during “Optimal Time” (defined as
hours 2–10 after awakening). Right column values are taken during “Adverse Time” (defined as hours 20–28 after awakening).

doi:10.1371/journal.pone.0151770.g009
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Leproult et al. [38] found that, while the temporal profiles of decrements in individual par-
ticipant’s subjective alertness and objective performance are similar (since they are under the
dual control of circadian and homeostatic processes), the magnitudes of their impairments are
unrelated. Several of their participants demonstrated better cognitive performance than their
subjective fatigue rating would suggest. This result may have been due to using a shorter per-
formance task duration of only 4 minutes in their study, however. Variability in subjective rat-
ings of performance is also due to individual differences in tolerance to sleep restriction
[39,40]. Our predictions improved remarkably when mixed effect models were used. Models of
PVT without mixed effects had an adjusted R2 of 0.401 while the R2 was 0.728 with mixed
effects.

Table 3. Table of Akaike Information Criterion Values (AIC) for different predictive models of ADD.

Variables Used in the Predictive Model for ADD Akaike Information Criterion (AIC) value

Slept Debt 29301

Wake Duration 29182

Phase 29149

Alertness 28977

Phase, Sleep Debt 29305

Wake Duration, Sleep Debt 29177

Wake Duration, Phase 29049

Alertness, Sleep Debt 28979

Wake Duration, Alertness 28965

Phase, Alertness 28921

Wake Duration, Sleep Debt, Alertness 28966

Phase, Wake Duration, Sleep Debt 28963

Phase, Alertness, Wake Duration 28922

Phase, Alertness, Sleep Debt 28922

Phase, Wake Duration, Sleep Debt, Alertness 28924

doi:10.1371/journal.pone.0151770.t003

Table 4. Table of Akaike Information Criterion Values (AIC) for different predictive models of DSST.

Variables Used in the Predictive Model for DSST Correct Akaike Information Criterion (AIC) value

Sleep Debt 26230

Phase 26123

Wake Duration 26094

Alertness 26025

Phase, Sleep Debt 26234

Wake Duration, Alertness 26024

Wake Duration, Sleep Debt 26022

Phase, Alertness 26006

Wake Duration, Phase 25994

Alertness, Sleep Debt 25921

Phase, Alertness, Wake Duration 25972

Phase, Wake Duration, Sleep Debt 25936

Phase, Alertness, Sleep Debt 25929

Wake Duration, Sleep Debt, Alertness 25918

Phase, Wake Duration, Sleep Debt, Alertness 25900

doi:10.1371/journal.pone.0151770.t004
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The best prediction of PVT and DSST performance took into account subjective alertness,
circadian phase, time since awakening, cumulative amount of sleep loss, and individual effects.
In terms of practical value, Alertness andWake Duration are relatively easy measures to obtain.
Gathering data for Sleep Debtmay require accurate logs or participant estimates. This extra
effort may be worthwhile since Sleep Debt was the second best sole predictor of PVT perfor-
mance. Determining Phase is most difficult in the field, but could be estimated based on prior
sleep history. This variable was not a strong predictor for PVT or ADD performance, but was
the second best predictor for DSST performance. The importance of obtaining an accurate
measure of Phase will therefore depend on the nature of the operational demands.

Limitations
It is possible that participants are unable to accurately predict PVT because of the short dura-
tion of time required to record the VAS, (i.e., a few seconds), which may cause participants to
rate their ability in relation to a short duration task, rather than taking into account the vigi-
lance required for a 10 minute PVT test. It has been shown that time on a task does affect atten-
tion and performance [41]. Some authors [36,42] have suggested asking participants to sit
quietly for one minute before filling out the VAS in order to give them some time to reflect on
their answer. Another approach may be to utilize a scale that asks participants to rate their abil-
ity to remain alert during a 10-minute task; it would be useful to determine if using this
approach would improve the accuracy of subjective sleep ratings.

An additional possible confounding factor is that participants in the Control group under-
went the PVT test more frequently than the CSR group. Since the PVT is a 10-minute test, more
frequent testing may lead to monotony and a decrease in motivation in the Control group. How-
ever, this would be expected to underestimate the effect of CSR, which is not what was seen.

Finally, we used sleep opportunities during FD as the basis for calculating Sleep Debt and
Wake Duration, rather than the actual sleep periods obtained. This is important, because indi-
viduals may not have slept for the entire sleep opportunity, especially when sleep opportunities
occurred during the biological day. We used this approach because we wanted the models to be
applicable to real-world data and it is easier in the real world to obtain estimates of time spent
in bed rather than estimates of the sleep duration. In addition, actual sleep efficiency [(total
sleep time/time in bed) x 100%] of 84% in the Control group and 90% in the CSR group during
FD are comparable to typical sleep efficiencies expected in the field, supporting the generaliz-
ability of these findings.

Future steps and models used in the workplace
Further study is needed to determine whether a similar model to the one presented in this paper
could be generalized to predict performance on more complicated cognitive tasks. The implemen-
tation of individual effects improves predictions, but complicates the utility of the model in prac-
tice. One future step could include integration of mobile or wearable devices with software for
analysis and fatigue-based risk management. Such collection systems could modify predictions
using Bayesian forecasting procedures, as described by Van Dongen et al. [43]. Ultimately, the
utility of the model will depend on the setting in which it is used [44,45]. Bio-mathematical mod-
els can give an estimate of the degree of performance impairment and the relative likelihood of
making a mistake. The actual cost of that mistake depends upon the work environment and task.

Conclusions
Given the negative association between chronic sleep restriction history and safety, it is impor-
tant to find a metric that can predict conditions where performance is likely impaired. This is a
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pervasive problem, as up to 40% of adults are sleeping fewer than 7 hours on weeknights [46].
We have shown that while most individuals are partially aware of their impairment with CSR,
they are not fully cognizant of its detrimental effects on their vigilant performance. Therefore,
reliance on a VAS subjective Alertness rating is insufficient to accurately predict cognitive per-
formance as measured by PVT, ADD or DSST. In addition, a predictive model should include
individual variation, as the ability to predict objective performance dramatically improves
when mixed effects models are involved. This may be due to the fact that subjective Alertness is
highly specific to the individual and also that people vary in their sensitivity to Sleep Debt. The
best predictive model of cognitive performance using PVT and DSST as a metric was obtained
when Alertness, Phase,Wake Duration, and Sleep Debt were included with mixed effects.

While most participants are not fully aware of deficits in their cognitive performance, it
may be that education regarding these factors would improve ability to predict cognitive per-
formance. It has been noted that a subject’s rating accuracy improves when given tasks that
provide feedback on cognitive performance [23]. In the future, better comprehension of the
biological processes involved in sleep restriction may help to refine predictive models of cogni-
tive performance. In addition, consideration of these factors when designing duty-hour regula-
tions and work schedules and public education of the inadequacy of self-assessed alertness
relative to performance, could improve occupational health and safety.
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